Pololu Adjustable Boost Regulator 4-25V View larger

Pololu Adjustable Boost Regulator 4-25V

This powerful, adjustable boost regulator can generate an output voltage as high as 25 V from an input voltage as low as 1.5 V, all in a small, 0.42" x 0.88" x 0.23" package. A trimmer potentiometer lets you set the boost regulator’s output voltage to a value between 4 and 25 V.

More details



This product is no longer in stock

9.01 JD


The Pololu adjustable boost regulator is a very flexible switching regulator (also called a switched-mode power supply, SMPS, or DC-to-DC converter) that can generate voltages higher than its input voltage. We offer two adjustable ranges: approximately2.5 V to 9.5 V and 4 V to 25 V. The output voltage can be set using the trimmer potentiometer in the upper-right corner of the board. The input voltage range is 1.5 V to 16 V (the input voltage should be kept below the output voltage). The integrated 2 A switch allows for output currents high enough to drive small motors, as in our 3pi robot, and allows large voltage gains, such as obtaining 24 V from two NiMH or NiCd cells. 

Some example applications include:

  • Powering 5 V or 3.3 V systems from lower-voltage batteries
  • Powering 5 V subsystems (e.g. sensors) in lower-voltage (e.g. 3.3 V) systems
  • Achieving consistent actuator operation when powered by fluctuating batteries
  • Powering high-brightness LEDs or a large number of LEDs in series

Setting the output voltage
The output voltage can be adjusted using a meter and a light load (e.g. a 1k resistor). Turning the potentiometer clockwise increases the output voltage. The output voltage can be affected by a screwdriver touching the potentiometer, so the output measurement should be done with nothing touching the potentiometer.

Efficiency and available output current

The available output current depends on the input and output voltages. The input current is limited to approximately 2 A, and, as shown in the graphs below, the efficiency is typically 80% to 90%. Therefore, the maximum available current will be approximately 800 mA when doubling the input voltage and approximately 400 mA when quadrupling the input voltage. At high output powers, the 20% lost in the regulator will cause substantial heating, which can limit the available output power (the regulator will automatically shut off if its internal temperature gets too high). At low output currents and high input and output voltages, the efficiency drops closer to 50%, though the lower power involved prevents heating from being an issue. Some output voltages shown in the efficiency graphs below can only be achieved using the 4-25V adjustable boost regulator.





Minimum operating voltage

:1.5 V

Maximum operating voltage

:16 V

Maximum input current

:2 A

Minimum output voltage

:4 V

Maximum output voltage

:25 V

Reverse voltage protection


Maximum quiescent current

:30 mA


:0.42″ × 0.88″ × 0.23″


:1.6 g



  • Comments ()